
Direct LiDAR-based object detector training from

automated 2D detections

Robert McCraith

Visual Geometry Group
University of Oxford

robert@robots.ox.ac.uk

Eldar Insafutdinov

Visual Geometry Group
University of Oxford

eldar@robots.ox.ac.uk

Lukas Neumann

Visual Recognition Group
Czech Technical University in Prague

neumalu1@fel.cvut.cz

Andrea Vedaldi

Visual Geometry Group
University of Oxford

vedaldi@robots.ox.ac.uk

Abstract

3D Object detection (3DOD) is an important component of many applications,
however existing methods rely heavily on datasets of depth and image data which
require expensive annotation in 3D thus limiting the ability of a diverse dataset
being collected which truly represents the long tail of potential scenes in the wild.
In this work we propose to utilise a readily available robust 2D Object Detector
and to transfer information about objects from 2D to 3D, allowing us to train a 3D
Object Detector without the need for any human annotation in 3D. We demonstrate
that our method significantly outperforms previous 3DOD methods supervised
by only 2D annotations, and that our method narrows the accuracy gap between
methods that use 3D supervision and those that do not.

1 Introduction

3D Object Detection in LiDAR data (3DOD) is an important component of many applications, ranging
from autonomous cars to robotics. However compared to the more traditional 2D Object Detection,
which is an extensively studied field of Computer Vision, its 3D counterpart on the other hand has
seen slower development, mainly due to challenging data acquisition and even more challenging
human annotation requirements, as labeling objects in 3D is substantially more expensive and more
time consuming while also being error prone. As a result in the context of autonomous driving, there
is only a handful of annotated datasets Geiger et al. [2012], Caesar et al. [2019], Sun et al. [2020] for
3D Object Detection, but still they only contain data for one or two cities, that reduces their ability to
generalise to other locations or to capture rare events (aka the long tail problem), which is especially
important in such a safety-critical application.

In order to address the aforementioned 3D annotation requirements, we instead propose to exploit a
readily available 2D Object Detector on a image sequence as a form of weak supervision to create
the training signal for the 3D Object detector in LiDAR data, thus completely removing the need for
3D human annotations. The cross-modal training approach has several advantages: Firstly, image
object detection is a well-studied problem with robust methods on very diverse data with minimal
bias towards specific models of car which may be more prominent in some locations. Secondly,
by only requiring a 2D detection at training time, we reduce drastically the amount of annotation
required to label new data. And last but not least, transferring detections between domains means
that our network must learn to reason about the 3D shape of objects, rather than presuming that an
object is present, which can cause problems for 3DOD methods which rely on image-based detectors
at test time as well Zakharov et al. [2020a], McCraith et al. [2022].

Figure 1: Qualitative examples of our LiDAR 3D Object Detection method. LiDAR point cloud and
detected cars (top row) and scene image (for visualization purposes only - bottom row)
In this paper, we introduce three key contributions to weakly-supervised 3DOD training: i) Unlike
previous methods, the 2D Object Detector is only required at training time, which not only simplifies
the pipeline and removes need for additional sensors in the car or a robot, but it also eliminates
sensitivity to missed detections by the image object detector, which is especially prevalent for small
far-away objects. ii) We introduce a new Soft Inlier Count (SIC) loss function which allows us to
train the whole system end-to-end using standard back-propagation. iii) A new multi-cell voting
scheme is introduced to relax the original hard-choice training loss of the fully-supervised method,
allowing the model to gradually improve its estimates as the training progresses.

2 Related

2.1 Supervised 3D Object Detection

Image object detection methods are quite mature, which resulted in many early 3D object detection
methods making detections in RGB and using these to select LiDAR data on which to reason about
3D location. A notable example of this is Frustum PointNets Qi et al. [2017]. In this method an
image based detector produces a set of bounding boxes who’s frustums are used to select a subset of
the LiDAR point cloud. These points are then segmented to further reduce down to only points inside
the 3D bounding box and a final stage produces location and rotation estimates.
Another popular technique is to perform detection and localisation on LiDAR data alone. A method
popularised in Zhou and Tuzel [2018] is to gather LiDAR points which fall into a voxel and learn
features voxel-by-voxel, then take these features and organize them to construct a BEV image of
features upon which further convolutional layers derive location. This has been expanded on in Lang
et al. [2019], Yin et al. [2021] where voxels are expanded in the vertical axis to contain all points in a
square patch (in BEV) and the resulting prediction are decoded by anchors or heatmaps.

2.2 Weakly Supervised 3D Object Detection

Recent works have attempted to resolve annotation difficulties by utilising a coarse annotation
strategy for a large set with fine annotations for a smaller set thus making annotation less time
consuming/costly. In Meng et al. [2020] they use a small number of weak annotations of bounding
box centres in BEV and a small amount of exact 3D box annotations. A detector is trained in a
two-stage manner by first predicting object proposals in BEV and then regressing accurate 3D
localisation. Such a coarse labeling strategy also can result in some of the problems mentioned in
Feng et al. [2020] such as inability to accurately localise car center under heavy occlusion, partial
scans of objects based on their perceived orientation and a poor ability to determine object shape
from some viewpoints. Qi et al. [2021] run a pre-trained detector (on a small subset of labeled data)
on an entire LiDAR sequence to produce a set of 3D boxes which are then passed into a multi-target
tracker. Utilising complimentary information from multiple frames allows them to improve detection
accuracy and apply their auto-labeler in a semi-supervised scenario.

2

Cross-modal supervision. Other formulations of this problem utilise additional datasets to super-
vise components of 3D detection pipelines. Qin et al. [2020] trains a 3D object proposal network
based on distance-normalised point cloud density. In the second stage, an image-based network
pretrained on a different dataset to classify proposals and predict viewpoint image bounding box is
used as a teacher for a LiDAR-only model. An alternative approach is used in Zakharov et al. [2020b]
where a network is pretrained on Parallel Domain McNamara [2020] – a synthetic dataset to provide
a good initial estimate of translation and rotation. This network then takes Mask R-CNN He et al.
[2017] detections that have a high overlap with a ground truth bounding box to refine the parameters
on read data. Finally, McCraith et al. [2022] also takes Mask R-CNN detections and uses a Frustum
PointNet style architecture and attempts to learn which points are inliers to remove noise, as with
the other methods however this method depends on the availability of camera and LiDAR at test
time (and their coordinate transformation remains consistent). Compared to these approaches we rely
on the same 2D detection but only a training time. This has an advantage that our trained detector
operates on LiDAR input and can recover objects that an RGB-based detector may fail to predict, for
example when the car is reflected from a glass wall. Training a detector end-to-end allows to exploit
regularities in the input LiDAR space and effectively utilise available 2D supervision.

3 Method

Our goal is to determine the 3D bounding boxes without the need for expensive, time consuming
human annotation which severely limits the construction of large scale datasets for 3DOD. To achieve
this we leverage mature 2D object detection methods for which the annotation is much simpler and
more large scale datasets with a diverse set of data exist from around the globe rather than a small
area as is typically seen in 3D Object Detection datasets.

Cross modal supervision such as this however has several challenges. 2D instance segmentation in
pixel space is a crude approximation of segmentation in 3D point clouds, with many pixels at the
boundary of objects being mis-classified (or coming from the region in the objects frustum from one
sensor but not the other), the transparency of windows results in LiDAR points correctly attributed to
a vehicle in image space to actually be located on surfaces behind the vehicle, and in many cases
LiDAR scans may only have very small parts of a vehicle visible leading to ambiguity or orientation
and translation.

3D Object Detection is typically reduced to regressing values for (X,Y, Z) center, (l, w, h) size and
✓ yaw, rather than the other option of predicting the 3D location of the 8 corners of the 3D bounding
box. In many cases object size is a hard to determine quantity, as noted in Feng et al. [2020] in many
cases only one side of a car is visible making annotations for size unreliable, with this in mind we
use a generic car shape with a fixed size to train out model to predict location and orientation which
we feel are much more important quantities for downstream tasks.
3.1 Exploiting 2D Labels in a 3D Point Cloud

In our method, the training signal is generated by an off-the-shelf 2D object detection and segmenta-
tion system, such as Mask R-CNN He et al. [2017]. Given an RGB image of the scene I 2 R3⇥H⇥W ,
the 2D detector creates a set of detections D in the form of a segmentation mask m for each detected
car

D =
�
m 2 {0, 1}H⇥W

(1)

Taking a corresponding LiDAR point cloud of the same scene L =
�
(x, y, z, r) 2 R4

, we define

the point cloud subset Lm for each detection m as
Lm =

�
p ⇢ L : proj(p) 2 m

(2)

proj(u) = KTcamu u 2 R3 (3)

where proj(u) is the projection of the world point u onto the 2D image given by known camera
intrinsics K and a transformation from LiDAR to camera co-ordinate system Tcam : R3 �! R3.

While in some cases it may be possible to directly reconstruct the 3D shape of an object given enough
LiDAR points exist in the Lm subset, in our context the object is only typically observed from one
side, resulting in partial scans at best. This is especially a problem for cars whose apparent angle
(how it appears in the image rather than its global orientation) suggests that the object it moving

3

Split LiDAR into pillars
and generate features

CNN operates
in BEV

Output decoders
Oriented template

Supervise
heatmaps

Yaw

Heatmap

Location
Tr

ai
n-

ti
m

e
on

ly

Mask R-CNN detections Crop LiDAR with masks

CNN

Compute Chamfer loss for
each rotation and select
the best

Figure 2: Our method only uses an off-the-shelf 2D object detector (bottom) to train a LiDAR 3D
object detector (top), yet still achieving comparable accuracy to full supervision by laborious and
costly 3D annotations.

away from the ego vehicle. As a result of this ambiguity we choose to utilise a 3D rigid model M
of a car with a typical car size and shape, which we fit to observed LiDAR points Lm. The model
M =

�
p 2 R3

is translated to a world location and rotated using the translation T and orientation ✓,

assuming that the translation and the orientation is assumed to be the car position and rotation (yaw)
respectively.

We then define the distance measure between the translated model TT,✓(M) and the observed object
point cloud Lm as

d
�
Lm,M | T, ✓

�
=

1

|Lm|
X

p2Lm

min
p02TT,✓(M)

kp� p
0k2 (4)

This distance measurement is similar to Chamfer distance which measures the distance between point
clouds A and B by taking the closest point in set B for each point in A and vice versa, however in
our case we only measure distance for observed every point in Lm as measuring distance also for
every model point M would not work when only part of the object is captured as is often the case.

Note that the distance in Eq. 4 is fully differentiable with respect to the translation/rotation parameters
T , and therefore it might be natural to ask if we could just iteratively search locations and compute
this metric then picking the location which minimizes the distance. This however results in poor
performance as outlier LiDAR points shift our prediction away from the expected location and when
the available points represent a small section of the the target vehicle this distance can be unstable.

We therefore propose sharing information on object locations across frames by using a deep neural
network which takes a LiDAR point cloud of the whole scene and generates a set of object
detections : L �!

�
(Ti, ✓i)

, where each detected object i is encoded by a 3D position of its center

Ti and an orientation ✓i. We then define a loss L for one scene as

L(| L,D,M) =
1

|D|
X

m2D

d(Lm,M | Tm, ✓m) (Tm, ✓m) 2 (L) (5)

and we train the network by optimizing the loss over the whole dataset.

3.2 Soft Inlier Count metric

While sharing knowledge of locations across frames allows for a more robust estimation with partial
point clouds, another issue still exists: often additional LiDAR points not belonging to the car are
mistakenly included in the Lm subset, which skews the distance measurement and the resulting

4

0 0.5 1 1.5

�1

�0.5

0

0.5

1

Distance between points

Lo
ss

kp � p0k2

SIC1, 0
�
kp � p0k2

�

SIC5, 0
�
kp � p0k2

�

SIC5, 2.5
�
kp � p0k2

�

SIC10, 5
�
kp � p0k2

�

Figure 3: Soft Inlier Count (SIC) loss. Using L2 norm directly results in outlier points having a
disproportionate influence on the loss minimising location. Different parametrisations of the SIC loss
(left). An example matching of the 3D rigid model (green) to the detected object point cloud, with
SIC loss value illustrated by the colour of each LiDAR point (right).
location/rotation estimate. Even the best 2D Object Detectors will make some erroneous predictions
at a pixel level, caused by occluders of similar appearance, or LiDAR not reflecting properly. These
points have a large value in our loss function for a correctly positioned model M which results in the
outliers pulling the prediction away from the correct location even if they are small in number (see
Fig. 3 - dashed line).

To address the outlier issue, we propose a new Soft Inlier Count (SIC) loss to soften the L2 metric of
Eq. 4 with a sigmoid function as

d̄
�
Lm,M | Tm, ✓m

�
=

1

|Lm|
X

p2Lm

X

p02TTm,✓m (M)

SIC↵,�(p, p
0) (6)

SIC↵,�(p, p
0) = � 1

1 + exp
�
� ↵kp� p0k2 + �

� (7)

where ↵ and � are method parameters whose value is determined empirically (see Sec. 4.2) and again
TT,✓(M) denotes the rigid model M translated by T and rotated by ✓.

As a result, instead of using the raw L2 distance between the LiDAR and template rigid model
we maximize the number of points sufficiently close to the template at a given location, with the
assumption that most of the LiDAR points in the mask fall on the object we are interested in. We
then sum across the entire set of LiDAR points Lm selected by the 2D Object Detector, which gives a
soft count of how many points LiDAR points are close to the model M as well as giving an idea of
quality, while still being fully differentiable.

3.3 Model Architecture

Our model is based on the CenterPoint architecture Yin et al. [2021], where LiDAR points are first
separated into voxels of infinite height, then are fed through a network to generate features for this
spatial volume. These feature maps are then scattered into a sparse Birds Eye View map of features
upon which a CNN is run. We make two notable improvements to the CenterPoint architecture:

Multi-cell Voting Scheme. The original CenterPoint architecture uses the 3D ground truth center
location to supervise the center heatmap head, where it selects a single cell of the heatmap as the
positive target while the rest of the heatmap is taken as negative. This hard choice makes sense when
3D ground truth is available, however in our case as the 3D information is unavailable and therefore
we need to take into account that the initial estimate of the object center might be well off, especially
when the object point cloud is incomplete as this will skew the center estimate towards the visible

5

original

proposed

Figure 4: Multi-cell Voting Scheme. Rather than making a single hard prediction (top-left), our
method produces multiple hypotheses by also making predictions in neighbouring cells of the feature
map (bottom-left). A sample scene point cloud with the neighbouring cells and their corresponding
predicted 3D bounding-boxes (right); colour of each bounding box encodes the source cell which
produced it.

part. To mitigate this issue instead of making a hard choice of center we instead initially pick the
median of the object point cloud and use this to select a neighbourhood of cells (see Fig. 4). During
a forward pass the prediction made by each of these cells is evaluated and the center of the best
prediction (= the prediction with the lowest loss value) is used as an updated center.

Yaw Estimation. Estimating rotation angle of the object (= yaw) is a surprisingly complex task
with a selection of methods to predict such quantities available. Regression is problematic as a
prediction near �⇡ for an object with orientation near ⇡ causes a loss value much higher than the
actual error. CenterPoint Yin et al. [2021] instead predicts a vector

�
sin ✓, cos ✓

�
2 [�1, 1]2 to

address this boundary issue. Whilst such a formulation works well if the target (true) orientation
is known at training time, when the ground truth is not available inherent ambiguities create deep
local minima of the loss function which make the training unstable. The most common ambiguity is
caused by the fact that for partial object point cloud all four 90�-step rotations typically have a very
similar loss.

In order to help the model not to get stuck in these local optima, at training time in every iteration we
instead forcibly try all possible orientations and pick the orientation with lowest loss value as the
target. To make this computationally feasible, we quantise the space of all orientations [�⇡,⇡] into
64 distinct bins and transform the yaw prediction into a 64-way classification. More formally, the
final loss function L̄(| L,D,M) is

✓
⇤
m

= argmin
✓02R

d̄
�
Lm,M | Tm, ✓

0� (8)

L̄(| L,D,M) =
1

|D|
X

m2D

⇣
d(Lm,M | Tm, ✓

⇤
m
) + CE(✓m | ✓⇤

m
)
⌘

(Tm, ✓m) 2 (L)(9)

where R represents the set of possible rotations and CE denotes the standard cross-entropy loss.

To summarize, our model takes a set of point cloud detections
�
(x, y, z, r) 2 R4

as the input (where

r denotes the reflectance value) and it outputs a dense feature map M 2 RH⇥W⇥F , consisting of a
center heatmap head [H⇥W ⇥1] 2 (0, 1), a regression head [H⇥W ⇥3] 2 R3 encoding the object
center 3D location offset from the corner of the cell, and the orientation head [H ⇥W ⇥ 64] 2 R64.
The size of the feature map is H = 200 and W = 176, therefore one cell corresponds to the size
of 40cm in world coordinates when 10cm voxel edge length is used (as the convolutional network
downsamples 4 times).

6

4 Experiments

4.1 Training and Inference

The KITTI Object Detection dataset Geiger et al. [2012] has 7481 publicly available 3D annotated
frames. This is usually split into roughly equal-sized training and validation sets with no sequence of
frames present in both originally created in Chen et al. [2017]. This allows us to compare to both
fully-supervised existing methods and also the weakly-supervised works Zakharov et al. [2020b], Qin
et al. [2020], McCraith et al. [2022] who only present results on this dataset. The standard evaluation
in Birds Eye View (BEV) IoU with a strict threshold of 70% is used.

To prepare our dataset Mask R-CNN He et al. [2017], Wu et al. [2019] is used to retrieve objects in
image space and generate the masks of point clouds which each detection will be compared to. The
entire collection of points is augmented with rotation, translation, left-right flipping and scaling. The
points are then sorted into the relative voxel bins which are fed into the network. Each LiDAR mask
is compared to the regression and yaw classifier outputs of the corresponding output cells. During
inference only the LiDAR data is utilised and detection is performed by the predicted heatmap with
Non-maxima Supression (NMS) to prevent each nearby cell predicting the same car.

To evaluate our method we compare to all relevant weakly-supervised 3DOD methods that provide
results on the KITTI dataset (see Tab. 1). Compared to McCraith et al. [2022], our method performs
significantly better and it only requires the availability of LiDAR at test time, the benefit of this
being that our detector is forced to reason about the shape of cars in the input LiDAR, rather than
simply attempting to fit the part of the frustum with the greatest density. Zakharov et al. [2020b]
pre-train their network on synthetic data and have a slow optimisation step for each instance detected
by Mask R-CNN. Because of this they use their method to generate autolabels and feed these
into PointPillars Lang et al. [2019], a very similar architecture to CenterPoint Yin et al. [2021],
however they ignore more difficult image detections and still struggle with high IoU thresholds. For
reference and to evaluate the gap between full and weak supervision, we also include results using the
same underlying backbone Yin et al. [2021] as our method. We observe that compared to previous
weakly-supervised methods, the gap is significantly smaller. We also observe that when removing the
prediction of car size our method is remarkably close to a fully supervised network in the easy case,
with a drop off in the moderate and hard cases, likely owing to the often extremely low number of
LiDAR Points available for such car instances making it difficult for our inlier counting method to
determine a meaningful fit.

4.2 Ablations

Soft Inlier Count Loss. To evaluate how well our mesh describes the observed point cloud we use
must ensure the locations predicted result in an object at locations where LiDAR has collected data
and are determined to belong to a car using the image mask. Chamfer distance or its one-sided variant
are commonly used to compare point clouds, but using the standard L2 loss is problematic as presence
of outlier points will disproportionately change the location of the associated vehicle, resulting in
suboptimal performance (see Tab. 2 - first row). By using the newly introduced Soft Inlier Count
(SIC), we observe this quantitatively in Tab. 2 that the accuracy is better, and we found that although

Method Supervision APBEV (IoU = 0.7)
Easy Moderate Hard

McCraith et al. [2022]† 2D detections 66.7 64.7 57.9
Zakharov et al. [2020a] 2D detections + synth 3D 81.00 59.80 -

ours
† 2D detections 86.39 74.79 67.31

CenterPoint† Yin et al. [2021] 3D ground truth 88.08 83.41 80.72
CenterPoint Yin et al. [2021] 3D ground truth 90.84 84.45 82.30

Table 1: Weakly-supervised 3D Object Detection accuracy on KITTI validation set. Fully-supervised
CenterPoint Yin et al. [2021] included for reference, methods using average 3D bounding-box instead
of predicting actual size denoted with †. 2D detection networks are trained on Cityscapes Cordts et al.
[2016] (McCraith et al. [2022]) or COCO Lin et al. [2014] (Zakharov et al. [2020b])

7

the SIC loss is not extremly sensitive to specific parameter settings, the best parameter values were
determined to be ↵ = 5 and � = 0. We also observe that for high ↵ values the loss becomes too strict
for our use case, as it becomes impossible to precisely match our rigid one-size-fits-all car model to
actual LiDAR detections.

Loss Function APBEV (IoU = 0.7)
Easy Medium Hard

kp� p
0k2 69.14 61.64 52.11

SIC1, 0

�
kp� p

0k2
�

79.23 67.26 59.69
SIC5, 0

�
kp� p

0k2
�

80.17 69.58 63.73
SIC5, 2.5

�
kp� p

0k2
�

79.91 69.88 63.19
SIC10, 5

�
kp� p

0k2
�

72.94 64.08 56.26

Table 2: Ablation of the Soft Inlier Count
(SIC) loss with different parameter values and
its comparison to the standard L2 loss on the
KITTI validation set.

Window APBEV (IoU = 0.7)
Size Easy Medium Hard

0 80.17 69.58 63.73
1 84.88 74.53 67.16
2 86.39 74.79 67.31
3 82.05 72.26 66.58

Table 3: Ablation of the multi-cell voting
scheme. Only a single heatmap cell (win-
dow size = 0) as in CenterPoint Yin et al.
[2021] performs worst and too big window
sizes create ambiguities, eg. when cars are
parked closely.

Multi-cell Voting. Normally in anchor/location based predictions such as PointPillars Lang et al.
[2019] and CenterPoint Yin et al. [2021] the object center is known and can be used to assign a
heatmap location and choose which the corresponding cell in the predictions to penalise in order to
calculate the loss. In our case however the center is unknown, which means some approximation must
be used. Regardless of how this center is chosen as it can only be based on the partial captures of the
LiDAR is will inherently be biased in some way, depending on how much of the car is visible/detected
by the mask. Quantitatively we observe in Tab. 3 that using only a single cell indeed has sub-optimal
accuracy, whilst on the other end using too large window of cells becomes too large and causes
ambiguities when objects are placed close together, as now multiple cars can potentially be predicted
by the same cell. To summarize, in our method we opt to use window size of 2 (ie. 5⇥ 5] cells) as it
provides decent accuracy boost while being significantly faster to train than larger window sizes.

5 Conclusion

In this work, we utilised a readily available robust 2D Object Detector to transfer information
about objects from 2D to 3D, allowing us to train a 3D Object Detector without the need for any
human annotation in 3D. We demonstrated that our method significantly outperforms previous 3DOD
methods supervised by only 2D annotations, and that our method narrows the accuracy gap between
methods that use laborious and costly 3D supervision and those that do not.

Acknowledgement

We are very grateful to Continental Corporation for sponsoring this research. Lukas was supported
by OP VVV funded project CZ.02.1.01/0.0/0.0/16019/0000765 “Research Center for Informatics”.
Robert gratefully acknowledges support from the EPSRC Centre for Doctoral Training in Autonomous
Intelligent Machines & Systems.

References

Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush
Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for
autonomous driving. arXiv preprint arXiv:1903.11027, 2019.

Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia. Multi-view 3d object detection network
for autonomous driving. In Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition, pages 1907–1915, 2017.

8

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban
scene understanding. In Proc. CVPR, 2016.

Di Feng, Lars Rosenbaum, Fabian Timm, and Klaus Dietmayer. Labels Are Not Perfect: Improving
Probabilistic Object Detection via Label Uncertainty. arXiv e-prints, art. arXiv:2008.04168, August
2020.

Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? the KITTI
vision benchmark suite. In Conference on Computer Vision and Pattern Recognition (CVPR),
2012.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick. Mask R-CNN. In Proc. ICCV,
2017.

Alex H. Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar Beijbom. Pointpil-
lars: Fast encoders for object detection from point clouds. In CVPR, 2019.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pages 740–755. Springer, 2014.

Robert McCraith, Eldar Insafutdinov, Lukas Neumann, and Andrea Vedaldi. Lifting 2d object
locations to 3d by discounting lidar outliers across objects and views. In 2022 International
Conference on Robotics and Automation (ICRA), pages 2411–2418. IEEE, 2022.

Kevin McNamara. Parallel domain: Data generation for autonomy. https://paralleldomain.
com/, 2020.

Qinghao Meng, Wenguan Wang, Tianfei Zhou, Jianbing Shen, Luc Van Gool, and Dengxin Dai.
Weakly supervised 3D object detection from LiDAR point cloud. In ECCV, 2020.

Charles R Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J Guibas. Frustum pointnets for 3d object
detection from rgb-d data. arXiv preprint arXiv:1711.08488, 2017.

Charles R Qi, Yin Zhou, Mahyar Najibi, Pei Sun, Khoa Vo, Boyang Deng, and Dragomir Anguelov.
Offboard 3d object detection from point cloud sequences. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 6134–6144, 2021.

Zengyi Qin, Jinglu Wang, and Yan Lu. Weakly supervised 3D object detection from point clouds. In
Proc. ACMM, 2020.

Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul Tsui, James
Guo, Yin Zhou, Yuning Chai, Benjamin Caine, et al. Scalability in perception for autonomous
driving: Waymo open dataset. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 2446–2454, 2020.

Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detectron2.
https://github.com/facebookresearch/detectron2, 2019.

Tianwei Yin, Xingyi Zhou, and Philipp Krähenbühl. Center-based 3d object detection and tracking.
CVPR, 2021.

Sergey Zakharov, Wadim Kehl, Arjun Bhargava, and Adrien Gaidon. Autolabeling 3D objects with
differentiable rendering of SDF shape priors. In IEEE Computer Vision and Pattern Recognition
(CVPR), June 2020a.

Sergey Zakharov, Wadim Kehl, Arjun Bhargava, and Adrien Gaidon. Autolabeling 3D objects with
differentiable rendering of SDF shape priors. In Proc. CVPR, 2020b.

Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning for point cloud based 3d object detection.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
4490–4499, 2018.

9

https://paralleldomain.com/
https://paralleldomain.com/
https://github.com/facebookresearch/detectron2

	Introduction
	Related
	Supervised 3D Object Detection
	Weakly Supervised 3D Object Detection

	Method
	Exploiting 2D Labels in a 3D Point Cloud
	Soft Inlier Count metric
	Model Architecture

	Experiments
	Training and Inference
	Ablations

	Conclusion

